Asian Resonance

Studies on Cobalt (Ii), Nickel (Ii) and Copper (Ii) Complexes of Schiff Bases Derived from CAA, CDA and CAPH as Potential Antimicrobial Agents

Abstract

Three Schiff bases viz. 4-Chlorobenzylidene-4-aminoacetanilide (CAA), 4-Chlorobenzylidene-2, 4-dinitroaniline (CDA) and 4-Cholorbenzylidene-4-aminophenol (CAPh) and their complexes with Co(II), Ni(II) and Cu(II). Metal complexes have been characterized using microanalytical data, IR, UV-VIS, Conductance etc. Complexes are coloured and soluble in methanol. Complexes exhibited good antimicrobial activity.

Keywords:Cobalt(II), Ni(II), and Cu(II) Schiff bases complexes. Potential antimicrobial agents, Spectral Studies of the complexes.

Introduction

The coordination chemistry of the metal complexes has been widely studied because of their interesting pharmacological properties specifically the coordination chemistry of metal complexes of Schiff bases have been studied extensively 1-5 owing to their adequate flexibility and enough selectivity towards the central metal atom. In our earlier communication we have already described the synthesis and characterization of 4-Chlorobenzylidene-4-aminoacetanilide (CAA), 4-Chlorobenzylidene-2, 4-dinitroaniline (CDA) and 4-Cholorbenzylidene-4-aminophenol (CAPh) and their complexes with Co (II), Ni(II) and Cu(II).

Recently some work has been done on the synthesis and physiochemical studies of ligand type of metal complexes which have been found to be enough antimicrobial activity.

The present communication reports about the antifungal and antibacterial activity of the NINE (1 to 9) metal complexes of Schiff bases of 4-Chlorobenzylidene-4-aminoacetanilide (CAA), 4-Chlorobenzylidene-2, 4-dinitroaniline (CDA) and 4-Cholorbenzylidene-4-aminophenol (CAPh) and their complexes with Co (II), Ni (II) and Cu (II).

Experimental: Biological Activity

The biological experiments for determining antimicrobial activity of metal complexes were done by "Brothe serial dilution method and filter paper disc method. In above methods, graded dilution of the test compounds in a suitable nutrients medium were inoculated with the organism and studied under suitable conditions in an incubator at 36°C. The zone of inhibition in the test plates were taken as a measure of biocidal activity ⁷⁻⁸. The antimicrobial activity of the ligand, and the metal complex have been screened in vitro, against bacterial species viz. E. colli, S. aureus, S. typhi, B. subtilis and Fungal species viz. Bacillus antheracis, Bacillus mycoides, Bacillus subtilus, Staphylococus albus, Salmonella paratyphi, Vibrio cholerae, and Xanthomonas malvacearum.

On coordination of a potentially active organic ligand with metal ions, the biological activity of the ligand is altered. The biological activities of Cu(II), Co(II) & Ni(II) complexes, metal salts and ligand were screened against the fungal species viz. Aspergilus flavous, Aspergilus niger, Chrysosporium tropicum, P. Triticena, Keratinomyces ajelloi, Microsporum gypseum, Penicillium liliacinum, and Verticillium lecanni.

All the nine complexes were dissolved in (1.0 ml) of dimethly formamide to have a stock solution of 1000 ppm by adding sterilized distilled water. The dilute solutions of 500 ppm and concentration were obtained by further dilution of the stock solution. The activity was studied in all the solutions in the cavity slides by mixing the spore suspension of the test organism separately. Standard drug was used to check and compare

Krishna Kumar Raj Department of Chemistry, Dr. H.S. Gour University, Sagar, M.P.

Asian Resonance

the activity of the complexes. All the fungi and bacteria were incubated at 24 \pm 1° C for about 30 hours. The observations are recorded in the table I and II.

$$CI \longrightarrow C \longrightarrow N \longrightarrow N \longrightarrow C \longrightarrow CI$$

$$CH_2 \longrightarrow CH_2$$

$$CH_3 \longrightarrow CH_2$$

$$CH_4 \longrightarrow CH_2$$

$$CH_2 \longrightarrow CH_2$$

$$CH_3 \longrightarrow CH_2$$

$$CH_4 \longrightarrow CH_2$$

$$CH_2 \longrightarrow CH_2$$

$$CH_3 \longrightarrow CH_2$$

$$CH_4 \longrightarrow CH_2$$

$$CH$$

$$CI \longrightarrow \begin{array}{c} H \\ CI \longrightarrow \\ CI \longrightarrow \\ CI \longrightarrow \\ M \longrightarrow \\ CI \longrightarrow \\ C$$

$$CI$$
 H_2O
 O_2N
 O_2
 O_3
 O_4
 O_2
 O_4
 O_4

M = Cu(II)

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

M-Ni(II) (6)

Asian Resonance

$\begin{array}{c} O \\ CI \\ O \\ OH_2 \\ OH_$	8 H ₂ O

9	CI— C—N—		
		ÇI	
	ÇH ₂		
	OH ₂		
N	=V		
1	/M	C-H 4H2	0
н-ç	//	. !	
	/ OH ₂ OH ₂	N	
	1 1		
ĊI	0 — () — N — C () — C () — C ()	X I	
_	M = N; (III) H	.0	
	M = Ni (II) H		

S		Di	ameter o	of growt d	th of inhibition zone in (ndiameter of well (6.0 mm)	ibition of well	zone in (6.0 m	Diameter of growth of inhibition zone in (mm) including the diameter of well (6.0 mm)	cluding	the	Control 500ppm
Z	Organism		CAA			CDA			CAPh		500ppm
		Co(II)	Ni(II)	Cu(II)	Co(II)	Ni(II) Cu(II)	Cu(II)	Co(II)	Ni(II)	Cu(II)	
:-	Aspergilus	14	12	13	14	13	11	10	12	10	17
2	Aspergilus Niger	=	12	12	14	13	9	12	10	=	16
ω.	Chrysosporium tropicum	10	=	12	10	9	10	Ξ	12	=	18
4	P. Triticena	11	12	10	13	14	12	14	16	17	20
5.	Keratinomyces ajelloi	12	10	12	13	13	15	13	12	18	19
6.	Microsporum	10	12	14	15	16	13	14	15	17	20
7.	Penicillium liljacinum	10	12	=======================================	10	13	12	11	12	13	16.
.∞	Verticillium	10	12	10	11	12	13	12	11	12	.15

ANTIFUNGAL ACTIVITY OF METAL COMPLEXES OF Co(II), Ni(II) and Cu(II).

P: ISSN No. 0976-8602 E: ISSN No. 2349-9443

Asian Resonance

			Diar	neter o	f growt	h of inliamete	nibition r of we	Diameter of growth of inhibition zone in (mm) including the diameter of well (10 mm)	m) i	includii	ng the	Control
Six	Organism			CAA			CDA			CAPh	18-25 18-25	+
. 3			Co(II)	Ni(II)	Cu(II)	Co(II) Ni(II)	Ni(II)	Cu(II)	Co(II)	Ni(II)	Cu(II)	500ppm
	Bacillus	+	20	19	22	17	23	22	16	17	18	26
2.	Bacillus mycoides	+	14	15	1	13	16	17	17	15	14	20
	Bacillus subtilus	'	· =	12	13	Ξ	13	14	13	12	14	18
4.	Escherichia coli		.12	11	14	10	15	16	17	16	15	19
, iv	Staphylococus	+	16	17	18	16	20	19	18	21	20	21
6.	Salmonella paratyphi	+	15	14	15	17	16	19	16	15	16	.20
7.	Subtilis aureus		18	14	17	16	15	19	18	16	17	22
	Vibrio	+	10	=	12	21	22	21	17	16	17	21
9.	Xanthomonas malvacearum	+	14	15	13	15	14	16	14	13	15	19

P: ISSN No. 0976-8602 E: ISSN No. 2349-9443

Asian Resonance

A perusal of the experimental observations of table I and table II clearly indicated that metal complexes of the drug had a significant activity in all concentrations in comparison to concentration, than that of the standard drug.

Of course Cu(II) complexes with Schiff's reagents were found to possess comparatively better activity in comparison to Co(II) and Ni(II) complexes and so there is enough scope for exploring the use of these complexes as Antibacterial and Antifungal Agents to provide relief from bacterial and fungal diseases in both men and animals.

Reference

- Williams, R.J.P. and Dasiliva, J.R.R.F.; "New Trends in Biochemistry," Academic Press, New York, (1978).
- Wilkinson, G.; (Ed.), "Comprehensive Coordination Chemistry," 6, Applications; (1987), Pergamon Press, (U.K.) pp. 35, 118, 230, 317, 389, 460, 488, 541, 755, 845, 1020.
- **3.** Hay, R.W.; "Bio-Inorganic Chemistry", Ellys Horwood Ltd., U.K., (1984).
- Sigel, H. and Sigel, A.; "Metal Ions in Biological Systems", (Ed.), 1-38.
- A.S. Aswar, P.J. Bahad and N.S. Bhave J. Indian Chem. Soc., 77, 363, (2000); Rev. Roum. Chim. 40, 53, (1995).
- Mishra A.P. and Krishna Kumar J. Institution of Chemist India Vol. 78, Page I, Page1-7, (2006).
- 7. .Vincenl. J.G. and Vincenl H.W. "Proc. Soc. Exp. Bio. Med Page-55 (1944).
- Jasper. G Maruzzella, J.C. and Henry, P.A. "J. of Americal Pharma. Assoce. Page-472 (1955).